Comments by Rafael Repullo on

Governance Through Exit and Voice: A Theory of Multiple Blockholders

Alex Edmans and Gustavo Manso

10th Annual Texas Finance Festival

April 11-12, 2008

1

Introduction

- Most firms have multiple small blockholders:
 - \rightarrow How can this be an optimal arrangement?
 - \rightarrow Splitting a block reduces intervention incentives ("voice")
 - \rightarrow We should see a single large blockholder

Introduction

- Most firms have multiple small blockholders:
 - \rightarrow How can this be an optimal arrangement?
 - \rightarrow Splitting a block reduces intervention incentives ("voice")
 - \rightarrow We should see a single large blockholder
- Trade off examined in paper
 - \rightarrow Splitting a block also increases informed trading ("exit")
 - \rightarrow More informative prices
 - \rightarrow Higher managerial effort

Model setup

- Ownership structure (taken as given)
 - Manager holds shareholding α
 - Blockholders hold shareholding β
 - Free float (that does not play any role) is $1 \alpha \beta$
- Firm value

$$v = \phi \log a + \log(b_1 + \dots + b_n) + \eta$$

- Effort (and cost of effort) of manager is *a*
- Effort (and cost of effort) of blockholder i = 1, ..., n is b_i

$$-\eta \sim N(0, \sigma_{\eta}^2)$$

Model setup

- Firm shares are traded in Kyle (1985) market
 - Manager is not allowed to trade
 - Blockholders are informed traders (know v)
 - Market maker (MM) observes effort of blockholders (b_i)
 - MM does <u>not</u> observe effort of manager (*a*) nor error η
 - Noise trader demand $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$

Trading game

- Each blockholder *i* submits market order $x_i(v)$
- MM observes order flow $y = x_1(v) + \ldots + x_n(v) + \varepsilon$
- MM sets a price p(y) = E(v|y)

Proposition 1

- Equilibrium price $p(y) = \phi \log a + \log(b_1 + \dots + b_n) + \lambda y$
- Expected trading profits of each blockholder $\pi_i = \frac{\sigma_\eta \sigma_\varepsilon}{(n+1)\sqrt{n}}$ \rightarrow do not depend on *a* or b_i 's

Efforts game

- Manager maximizes $\alpha E(p) a$
- Blockholder *i* maximizes $\frac{\beta}{n}E(v) b_i$

Proposition 2

• Manager's effort $a = \alpha \phi \frac{n}{n+1} \rightarrow$ increasing in $n \rightarrow$ "exit" • Blockholder *i*'s effort $b_i = \frac{\beta}{n^2} \rightarrow$ decreasing in $n \rightarrow$ "voice"

Sketch of proof

• Manager's problem

$$\max_{a} \alpha \left[\phi \log a^* + \log \sum b_i + \lambda E \left(\sum x_i(v) \right) \right] - a$$

$$\uparrow$$
Equilibrium value

where

$$x_{i}(v) = \frac{1}{\lambda(n+1)} \Big[\phi \log a + \log \sum b_{i} + \eta - \phi \log a^{*} - \log \sum b_{i} \Big]$$

$$\uparrow$$
Actual value

Sketch of proof

• Manager's problem

FOC:
$$\alpha \phi \frac{n}{n+1} \frac{1}{a} = 1 \rightarrow a = \alpha \phi \frac{n}{n+1}$$

• Blockholder *i*'s problem

$$\max_{b_i} \left[\frac{\beta}{n} \left(\phi \log a + \log \sum b_i \right) - b_i \right]$$

FOC: $\frac{\beta}{n} \frac{1}{\sum b_i} = 1 \implies b_i = \frac{\beta}{n^2}$

Comment 1: Manager's objective function

• Why $\alpha E(p) - a$ and not $\alpha E(v) - a$?

 \rightarrow Common assumption in literature

• What would happen with $\alpha E(v) - a$?

$$\max_{a} \left[\alpha \left(\phi \log a + \log \sum b_{i} \right) - a \right]$$

 \rightarrow Effort would be $a = \alpha \phi$ (higher and independent on *n*)

Comment 2: Unobservable manager's effort

- Why is it assumed that the MM does not observe *a*?
 - \rightarrow Plausible, but contrast with observability of the b_i 's

 \rightarrow Claim that the latter is assumed for tractability

• What would happen if the MM observed *a*?

$$\max_{a} \left[\alpha E(p) - a \right] = \alpha \left(\phi \log a + \log \sum b_{i} \right) - a$$

 \rightarrow Effort would be $a = \alpha \phi$ (higher and independent of *n*)

Results on number of blockholders

- Firm value maximization: $\max_{n} E(v) \rightarrow n^* = \phi 1$
 - \rightarrow Increasing in relative productivity of managerial effort ϕ
 - \rightarrow What would happen if $a = \alpha \phi ? \rightarrow n^* = 1$
 - \rightarrow *n* does not affect managerial effort *a* \rightarrow single blockholder
- Social value maximization: $\max_{n} [E(v) a nb] \rightarrow \tilde{n}(\alpha, \beta, \phi)$

 \rightarrow Decreasing in α , increasing in β and ϕ

 \rightarrow What would happen if $a = \alpha \phi ? \rightarrow \tilde{n} = 1$

Results on number of blockholders

• Blockholder value maximization:

$$\max_{n} [\beta E(v) - nb + n\pi] \to \hat{n}(\beta, \phi)$$

 \rightarrow Increasing in β and ϕ

 \rightarrow What would happen if $a = \alpha \phi ? \rightarrow \hat{n} = 1$

Comment 3: Robustness of the results

- Results crucially depend on assumptions on
 - Manager's objective function (short-term concerns)
 - Unobservability of manager's effort
- Otherwise "exit" channel would not operate ("voice" $\rightarrow n = 1$)

Comment 4: Initial ownership structure

• How would initial owner structure IPO?

 $\max_{(\alpha,\beta)} [\alpha E(p) + (1-\alpha)E(v) - a - nb]$ subject to: $\alpha + \beta \le 1$ and $n = \hat{n}(\beta, \phi)$

• Conjecture: $\alpha + \beta = 1 \rightarrow$ no free float!

Comment 5: Modeling complementarities

• More general specification of $v(a, \sum b_i)$

$$\rightarrow$$
 So that $\frac{\partial^2 v}{\partial a \partial b_i} \neq 0$

• Why not use a CES specification?

$$v(a, \sum b_i) = \left[\phi a^{\sigma} + (1-\phi) \left(\sum b_i\right)^{\sigma}\right]^{r/\sigma}$$

 \rightarrow Perfect substitutes for $\sigma = 1$

 \rightarrow Cobb-Douglas for $\sigma = 0$

$$\rightarrow$$
 Perfect complements for $\sigma = -\infty$

Comment 6: What about insider trading?

- Model assumes that blockholders trade on inside information
 - \rightarrow Essential for the "exit" channel (so we can get n > 1)
- But insider trading legislation may prevent this trading
- Distinction between active and passive blockholders
 - \rightarrow Active blockholders sit on board (and do not trade)
 - \rightarrow Passive blockholders may trade (e.g. on takeover decision)
 - \rightarrow See Maug (1998) and Mello and Repullo (2004)